首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2782篇
  免费   228篇
  国内免费   198篇
  2023年   41篇
  2022年   58篇
  2021年   180篇
  2020年   111篇
  2019年   131篇
  2018年   124篇
  2017年   117篇
  2016年   156篇
  2015年   199篇
  2014年   210篇
  2013年   249篇
  2012年   276篇
  2011年   244篇
  2010年   147篇
  2009年   119篇
  2008年   148篇
  2007年   114篇
  2006年   89篇
  2005年   69篇
  2004年   64篇
  2003年   48篇
  2002年   43篇
  2001年   33篇
  2000年   24篇
  1999年   29篇
  1998年   17篇
  1997年   19篇
  1996年   23篇
  1995年   12篇
  1994年   20篇
  1993年   9篇
  1992年   11篇
  1991年   11篇
  1990年   11篇
  1989年   8篇
  1988年   6篇
  1987年   3篇
  1986年   4篇
  1985年   6篇
  1984年   2篇
  1983年   3篇
  1981年   2篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   2篇
  1968年   3篇
排序方式: 共有3208条查询结果,搜索用时 15 毫秒
51.
Producing gene fusions through genomic structural rearrangements is a major mechanism for tumor evolution. Therefore, accurately detecting gene fusions and the originating rearrangements is of great importance for personalized cancer diagnosis and targeted therapy. We present a tool, BreakTrans, that systematically maps predicted gene fusions to structural rearrangements. Thus, BreakTrans not only validates both types of predictions, but also provides mechanistic interpretations. BreakTrans effectively validates known fusions and discovers novel events in a breast cancer cell line. Applying BreakTrans to 43 breast cancer samples in The Cancer Genome Atlas identifies 90 genomically validated gene fusions. BreakTrans is available at http://bioinformatics.mdanderson.org/main/BreakTrans  相似文献   
52.
Although surfactin is able to inhibit cancer cell proliferation and to induce cancer cell apoptosis, the molecular mechanism responsible for this process remain elusive. In this study, the signaling network underlying the apoptosis of human hepatoma (HepG2) cells induced by surfactin was investigated. It is found that the reaction oxygen species (ROS) production and intracellular calcium ([Ca2+]i) accumulation are both induced HepG2 cells apoptosis. The [Ca2+]i exaltation was partly depended on the Ca2+ release from inositol 1,4,5-trisphosphate (IP3) and ryanodine (Ry) receptors channels, which both triggered endoplasmic reticulum stress (ERS). The results showed that surfactin induced the ROS production and ROS production led to ERS. The occurrence of ERS increased the [Ca2+]i level and the processes associated with blocking extracellular signal-regulated kinase (ERK) pathway. According to a comprehensive review of all the evidence, it is concluded that surfactin induces apoptosis of HepG2 cells through a ROS–ERS–Ca2+ mediated ERK pathway.  相似文献   
53.
Curcumin is the major constituent of turmeric plant, an ancient spice widely used in Indian cuisine and traditional herbal medicine. Recently, the potential medical use of curcumin as anti‐cancer and anti‐inflammatory agent has set off an upsurge in research into the mechanism for its broad biological effects. We showed that CRM1, an important nuclear exportin, is a cellular target of curcumin by serious experimental and theoretical investigation. Using a nuclear export functional assay, we observed a clear and rapid shift of cargo proteins from a cytoplasmic localization to the nucleus when treated with curcumin or its structural analogue dibenzylideneacetone (DBA). We demonstrated that curcumin could specifically target the conserved Cys528 of CRM1 through mass spectrometric analysis and in vivo experiments. Furthermore, computational modeling has revealed that curcumin could be correctly docked into the hydrophobic pocket of CRM1 judged from shape complementarity and putative molecular interactions. The Michael acceptor moiety on curcumin is within the appropriate distance to enable Michael reaction with Cys residue of CRM1. More importantly, we showed that nuclear retention of FOXO1 could be observed in the presence of Leptomycin B (LMB) or curcumin whereas in cells expressing the CRM1‐Cys528 mutant, only a cytoplasmic localization was observed. The inhibition of nuclear traffic by curcumin may account for its myriad of biological effects, particularly for its therapeutic properties in cancer and inflammatory diseases. Our findings may have important implications for further clinical investigation of curcumin .  相似文献   
54.
Yang  Xiangdong  Yang  Jing  Wang  Yisheng  He  Hongli  Niu  Lu  Guo  Dongquan  Xing  Guojie  Zhao  Qianqian  Zhong  Xiaofang  Sui  Li  Li  Qiyun  Dong  Yingshan 《Transgenic research》2019,28(1):103-114

Sclerotinia stem rot (SSR), caused by the oxalate-secreting necrotrophic fungal pathogen Sclerotinia sclerotiorum, is one of the devastating diseases that causes significant yield loss in soybean (Glycine max). Until now, effective control of the pathogen is greatly limited by a lack of strong resistance in available commercial soybean cultivars. In this study, transgenic soybean plants overexpressing an oxalic acid (OA)-degrading oxalate oxidase gene OXO from wheat were generated and evaluated for their resistance to S. sclerotiorum. Integration and expression of the transgene were confirmed by Southern and western blot analyses. As compared with non-transformed (NT) control plants, the transgenic lines with increased oxalate oxidase activity displayed significantly reduced lesion sizes, i.e., by 58.71–82.73% reduction of lesion length in a detached stem assay (T3 and T4 generations) and 76.67–82.0% reduction of lesion area in a detached leaf assay (T4 generation). The transgenic plants also showed increased tolerance to the externally applied OA (60 mM) relative to the NT controls. Consecutive resistance evaluation further confirmed an enhanced and stable resistance to S. sclerotiorum in the T3 and T4 transgenic lines. Similarly, decreased OA content and increased hydrogen peroxide (H2O2) levels were also observed in the transgenic leaves after S. sclerotiorum inoculation. Quantitative real-time polymerase chain reaction analysis revealed that the expression level of OXO reached a peak at 1 h and 4 h after inoculation with S. sclerotiorum. In parallel, a significant up-regulation of the hypersensitive response-related genes GmNPR1-1, GmNPR1-2, GmSGT1, and GmRAR occurred, eventually induced by increased release of H2O2 at the infection sites. Interestingly, other defense-related genes such as salicylic acid-dependent genes (GmPR1, GmPR2, GmPR3, GmPR5, GmPR12 and GmPAL), and ethylene/jasmonic acid-dependent genes (GmAOS, GmPPO) also exhibited higher expression levels in the transgenic plants than in the NT controls. Our results demonstrated that overexpression of OXO enhances SSR resistance by degrading OA secreted by S. sclerotiorum and increasing H2O2 levels, and eliciting defense responses mediated by multiple signaling pathways.

  相似文献   
55.
1,3-1,4-β-葡聚糖酶(E.C.3.2.1.73)是一种重要的工业用酶,其可以通过特异性切割毗邻β-1,3-糖苷键的β-1,4-糖苷键将β-葡聚糖或地衣多糖降解为纤维三糖和纤维四糖。微生物β-葡聚糖酶属于糖苷水解酶家族16,其三维结构为卷心蛋糕状的逆向β-片层结构。文中综述了近些年来β-葡聚糖酶在工业上的应用情况及酶蛋白质工程改造的研究进展,并对其研究前景进行了展望。  相似文献   
56.
57.
Due to unprecedented features including high‐energy density, low cost, and light weight, lithium–sulfur batteries have been proposed as a promising successor of lithium‐ion batteries. However, unresolved detrimental low Li‐ion transport rates in traditional carbon materials lead to large energy barrier in high sulfur loading batteries, which prevents the lithium–sulfur batteries from commercialization. In this report, to overcome the challenge of increasing both the cycling stability and areal capacity, a metallic oxide composite (NiCo2O4@rGO) is designed to enable a robust separator with low energy barrier for Li‐ion diffusion and simultaneously provide abundant active sites for the catalytic conversion of the polar polysulfides. With a high sulfur‐loading of 6 mg cm?2 and low sulfur/electrolyte ratio of 10, the assembled batteries deliver an initial capacity of 5.04 mAh cm?2 as well as capacity retention of 92% after 400 cycles. The metallic oxide composite NiCo2O4@rGO/PP separator with low Li‐ion diffusion energy barrier opens up the opportunity for lithium–sulfur batteries to achieve long‐cycle, cost‐effective operation toward wide applications in electric vehicles and electronic devices.  相似文献   
58.
Herbaceous peony has been widely cultivated in China due to its substantial ornamental and medicinal value. In the present study, the phenotypic characteristics, total fatty acid (FA) content, and nine FA compositions of herbaceous peony seeds from 14 populations belonging to six species and one subspecies were determined by normal test and gas chromatography/mass spectrometry (GC/MS). The results showed that the phenotypic characteristics of seeds varied dramatically among species. The concentrations of five major FAs in seed oils were as follows: linoleic acid (173.95–236.51 μg/mg), linolenic acid (227.82–302.71 μg/mg), oleic acid (135.32–208.81 μg/mg), stearic acid (6.52–11.7 μg/mg), and palmitic acid (30.67–47.64 μg/mg). Correlation analysis demonstrated that oleic acid had the highest partial correlation coefficient with total FAs and might be applied to develop a model of phenotypic characteristics. FAs were significantly influenced by the following environmental factors: latitude, elevation, and annual average temperature. Based on the FA levels in the seed oils, clustering analysis divided 14 populations into two clusters. It was found that the average contents of oleic acid, linoleic acid, and total FAs in cluster I (147.16 μg/mg, 200.31 μg/mg, and 671.24 μg/mg, respectively) were significantly lower than those in cluster II (196.65 μg/mg, 220.16 μg/mg, and 741.78 μg/mg, respectively). Cluster I was perfectly consistent with subsect. Foliolatae, while cluster II was in good agreement with subsect. Dissectifoliae. Therefore, the FA composition of wild herbaceous peony seed oil might be used as a chemotaxonomic marker.  相似文献   
59.
Previous studies found that the activity of Sortase A, a bacterial surface protein from Staphylococcus aureus, was inhibited by curcumin and its analogues. To explore this inhibitory mechanism, Sortase A and its inhibitors in complex systems were studied by molecular docking, molecular modelling, binding energy decomposition calculation and steered molecular dynamics simulations. Energy decomposition analysis indicated that PRO-163, LEU-169, GLN-172, ILE-182 and ILE-199 are key residues in Sortase A-inhibitor complexes. Furthermore, interactions between the methoxyl group on the benzene ring in the conjugated molecule (curcumin, demethoxycurcumin, bisdemethoxycurcumin) and VAL-168, LEU-169 and GLN-172 induce the inhibitory activity based on the energy decomposition and distance analyses between the whole residues and inhibitors. However, because of its coiled structure, the non-conjugated molecule, tetrahydrocurcumin, with key residues in the binding sites of Sortase A, interacted weakly with SrtA, leading to the loss of inhibitory activity. Based on these results, the methoxyl group on the benzene ring in the conjugated molecule largely influenced the inhibitory activity of the Sortase A inhibitors.  相似文献   
60.
Liu  Hong  Yang  Jie  Wang  Kai  Niu  Tengfei  Huang  Dongya 《Neurochemical research》2019,44(5):1065-1078
Neurochemical Research - Mounting evidences have demonstrated that diet-induced obesity is associated with cognition impairment via increasing oxidative stress and inflammation in the brain....  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号